Antiguos astrónomos desarrollaron la primera escritura conocida

Antiguos astrónomos desarrollaron la primera escritura conocida

Los científicos necesitan teorías, los arqueólogos quizás incluso más, pero a pesar de que innumerables científicos han estudiado innumerables sitios arqueológicos durante miles de años, no estamos más cerca de responder la pregunta importante: ¿Una civilización antigua viajó por el mundo hace miles de años y sembró el creación de múltiples civilizaciones posteriores?

Aunque las estructuras piramidales y las estructuras de piedra inusualmente grandes se descubren de forma rutinaria en todo el mundo, es imposible usar la teoría actual para decir que están conectadas. Los arqueólogos, para decirlo sin rodeos, simplemente no son muy buenos para comparar objetos "similares". Para que se haga una coincidencia, los artefactos tienen que ser idénticos, y como no hay dos artefactos arqueológicos descubiertos hasta la fecha que sean idénticos, nunca se pueden vincular, sin importar cuán similares puedan parecer.

Ahora esa posición se ha invertido por completo. Una hipótesis reciente hecha por el Dr. Derek Cunningham, un investigador independiente, podría estar a punto de cambiarlo todo. Al unir cuatro campos científicos separados, la astronomía, el estudio de los primeros lenguajes escritos, la cartografía y la arqueología, el Dr. Cunningham ha presentado una teoría completamente nueva de que las civilizaciones antiguas desarrollaron la escritura a partir de una forma geométrica muy arcaica que se basa en el estudio del movimiento. de la luna y el sol.

El concepto de escritura temprana en la Edad de Piedra se ha discutido muchas veces durante los últimos 100 años. Sin embargo, el problema de estudiar la escritura es que todas las teorías actuales miran la escritura utilizando sistemas conocidos actuales como base. Este enfoque de trabajar hacia atrás, argumenta el Dr. Cunningham, carga el intento de investigación con un fuerte sesgo estructural.

Con base en la evidencia de que muchos huesos arcaicos revestidos con líneas rectas largas son huesos de conteo astronómico, la nueva hipótesis del Dr. Cunningham es que la estructura geométrica de las líneas tal vez sea simplemente una escritura astronómica. En esta nueva teoría se argumenta que debido a que los primeros astrónomos no tenían un sistema alfabético moderno con el que trabajar, simplemente hicieron la siguiente mejor opción y fue escribir sus valores astronómicos como ángulos. De esta manera, un mes sidéreo de 27,32 días se trazaría como una línea a 27,32 grados.

Por supuesto, existen muchos valores astronómicos, pero utilizando esta teoría se ha descubierto una serie específica que se relaciona con los astrónomos utilizados para medir con precisión el tiempo y predecir la aparición de eclipses. Se ha descubierto que estos valores, que son alrededor de siete, explican los datos de una amplia gama de muestras arqueológicas que datan de alrededor de 400.000 años antes del presente, hasta el desarrollo de la escritura celta de Ogham.

Como teoría, la idea es muy simple y, lo más importante de todo, se prueba fácilmente. La teoría también ha mostrado una consistencia increíble, con la idea explicando completamente el desarrollo de la protoescritura primitiva arcaica a los primeros estilos de escritura moderna a partir de proto-cuneiforme.

Los datos también explican numerosas lagunas en las teorías actuales, como la estructura de líneas hasta ahora inexplicables presentes en Stonehenge Bush Barrow Lozenge, un intrincado colgante de lámina de oro descubierto en el cuerpo de una persona de alto rango.

La teoría también cuestiona la estructura de las calzadas ubicadas frente a las Grandes Pirámides, y la presencia de grandes gigantes enigmáticos, como el Gigante de Atacama.

La teoría completa y otros pensamientos sobre el pasado antiguo se presentan en el libro del autor "El largo viaje: 400.000 años de ciencia de la Edad de Piedra".


Ptolomeo

Nuestros editores revisarán lo que ha enviado y determinarán si deben revisar el artículo.

Ptolomeo, Latín en su totalidad Claudio Ptolomeo, (nacido c. 100 d. C. - fallecido c. 170 d. C.), astrónomo, matemático y geógrafo egipcio de ascendencia griega que floreció en Alejandría durante el siglo II d. C. En varios campos, sus escritos representan el logro culminante de la ciencia grecorromana, en particular su modelo geocéntrico (centrado en la Tierra) del universo ahora conocido como el sistema ptolemaico.

¿Por qué es más conocido Ptolomeo?

El modelo matemático del universo de Ptolomeo tuvo una profunda influencia en la astronomía medieval en el mundo islámico y en Europa. El sistema ptolemaico era un sistema geocéntrico que postulaba que las trayectorias aparentemente irregulares del Sol, la Luna y los planetas eran en realidad una combinación de varios movimientos circulares regulares vistos en perspectiva desde una Tierra estacionaria.

¿Cómo impactó Ptolomeo al mundo?

Además de su trabajo astronómico, Ptolomeo registró longitudes y latitudes en grados para aproximadamente 8,000 ubicaciones en su mapa del mundo, dando una imagen detallada del mundo habitado como lo conocían los residentes del Imperio Romano en su apogeo. Aunque distorsionado, su trabajo influyó en los cartógrafos bizantinos y renacentistas.

¿Cuáles fueron los logros de Ptolomeo?

Ptolomeo hizo contribuciones a la astronomía, las matemáticas, la geografía, la teoría musical y la óptica. Compiló un catálogo de estrellas y la tabla más antigua de una función trigonométrica y estableció matemáticamente que un objeto y su imagen especular deben formar ángulos iguales a un espejo. En varios campos, sus escritos representan el logro culminante de la ciencia grecorromana.

Prácticamente no se sabe nada sobre la vida de Ptolomeo, excepto lo que se puede inferir de sus escritos. Su primera gran obra astronómica, la Almagesto, se completó alrededor del año 150 d. C. y contiene informes de observaciones astronómicas que Ptolomeo había hecho durante el cuarto de siglo anterior. El tamaño y el contenido de su producción literaria posterior sugiere que vivió hasta aproximadamente el año 170 d. C.


Orígenes mesopotámicos

Los eruditos generalmente están de acuerdo en que la forma más antigua de escritura apareció hace casi 5.500 años en Mesopotamia (actual Irak). Los primeros signos pictóricos fueron sustituidos gradualmente por un complejo sistema de caracteres que representaban los sonidos del sumerio (el idioma de Sumer en el sur de Mesopotamia) y otros idiomas.

A partir del 2900 a. C., estos comenzaron a imprimirse en arcilla húmeda con una aguja de caña, haciendo marcas en forma de cuña que ahora se conocen como cuneiformes.

Tableta de 4000 años que registra los salarios de los trabajadores.

Esta tablilla conserva una cuenta de los salarios pagados a los trabajadores hace 4.000 años.

El proceso de escritura cuneiforme se estabilizó durante los siguientes 600 años. Se eliminaron las curvas, se simplificaron los letreros y se perdió la conexión directa entre el aspecto de los pictogramas y su objeto original de referencia.

En algún momento durante este mismo período, los símbolos & ndash que se leyeron inicialmente de arriba a abajo & ndash se leyeron de izquierda a derecha en líneas horizontales (las alineaciones verticales se mantuvieron para pronunciamientos más tradicionales). De acuerdo con esto, los símbolos también fueron realineados, rotados 90 grados en sentido antihorario.

Finalmente, en 2340 a. C., Sumer cayó ante los ejércitos de Sargón, rey de los acadios, un pueblo semítico del norte que previamente había coexistido con los sumerios. Para entonces, el cuneiforme se había utilizado, durante varios siglos, de forma bilingüe para escribir también en acadio. Sargón, el último de una línea de líderes acadios expansivos, construyó un Imperio que se extendía desde el Líbano actual hasta & lsquot el mar inferior & rsquo (el Golfo Pérsico). Con el tiempo, hasta 15 idiomas utilizarían caracteres inspirados en la escritura cuneiforme.

El sumerio se mantuvo como lengua de aprendizaje hasta al menos el año 200 a. C. Cuneiforme, el sistema inventado para registrarlo, sin embargo, lo sobrevivió por casi tres siglos: duró como un sistema de escritura para otros idiomas hasta bien entrada la era cristiana. El último documento datable en cuneiforme es un texto astronómico del 75 d.C.


Contenido

Las primeras culturas identificaron los objetos celestes con dioses y espíritus. [2] Relacionaron estos objetos (y sus movimientos) con fenómenos como la lluvia, la sequía, las estaciones y las mareas. En general, se cree que los primeros astrónomos fueron sacerdotes y que entendieron que los objetos y eventos celestes eran manifestaciones de lo divino, de ahí la conexión de la astronomía temprana con lo que ahora se llama astrología. Un colmillo de mamut de marfil tallado de 32.500 años de antigüedad podría contener la carta estelar más antigua conocida (que se asemeja a la constelación de Orión). [3] También se ha sugerido que el dibujo en la pared de las cuevas de Lascaux en Francia que data de hace 33,000 a 10,000 años podría ser una representación gráfica de las Pléyades, el Triángulo de Verano y la Corona del Norte. [4] [5] Las estructuras antiguas con alineamientos posiblemente astronómicos (como Stonehenge) probablemente cumplieron funciones astronómicas, religiosas y sociales.

Los calendarios del mundo a menudo se han establecido mediante observaciones del Sol y la Luna (que marcan el día, el mes y el año), y eran importantes para las sociedades agrícolas, en las que la cosecha dependía de la siembra en la época correcta del año, y para las cuales el la luna casi llena era la única iluminación para los viajes nocturnos a los mercados de la ciudad. [6]

El calendario moderno común se basa en el calendario romano. Aunque originalmente era un calendario lunar, rompió el vínculo tradicional del mes con las fases de la Luna y dividió el año en doce meses casi iguales, que en su mayoría alternaban entre treinta y treinta y un días. Julio César instigó la reforma del calendario en el 46 a. C. e introdujo lo que ahora se llama el calendario juliano, basado en el año de 365 1 ⁄ 4 días propuesto originalmente por el astrónomo griego Callippus del siglo IV a. C.

Mesopotamia Editar

Los orígenes de la astronomía occidental se pueden encontrar en Mesopotamia, la "tierra entre los ríos" Tigris y Éufrates, donde estaban ubicados los antiguos reinos de Sumer, Asiria y Babilonia. Una forma de escritura conocida como cuneiforme surgió entre los sumerios alrededor del 3500-3000 a. C. Nuestro conocimiento de la astronomía sumeria es indirecto, a través de los primeros catálogos de estrellas babilónicos que datan de alrededor del 1200 a. C. El hecho de que muchos nombres de estrellas aparezcan en sumerio sugiere una continuidad que llega hasta la Edad del Bronce Antiguo. La teología astral, que dio a los dioses planetarios un papel importante en la mitología y religión mesopotámicas, comenzó con los sumerios. También utilizaron un sistema numérico de valor posicional sexagesimal (base 60), que simplificó la tarea de registrar números muy grandes y muy pequeños. La práctica moderna de dividir un círculo en 360 grados, o una hora en 60 minutos, comenzó con los sumerios. Para obtener más información, consulte los artículos sobre números y matemáticas babilónicos.

Las fuentes clásicas utilizan con frecuencia el término caldeos para los astrónomos de Mesopotamia, que eran, en realidad, sacerdotes-escribas especializados en astrología y otras formas de adivinación.

La primera evidencia de reconocimiento de que los fenómenos astronómicos son periódicos y de la aplicación de las matemáticas a su predicción es babilónica. Tablas que datan del período de la Antigua Babilonia documentan la aplicación de las matemáticas a la variación en la duración de la luz del día durante un año solar. Siglos de observaciones babilónicas de fenómenos celestiales se registran en la serie de tablillas cuneiformes conocidas como Enūma Anu Enlil. El texto astronómico significativo más antiguo que poseemos es la Tabla 63 de la Enūma Anu Enlil, la tablilla de Venus de Ammi-saduqa, que enumera el primer y último ascenso visible de Venus durante un período de aproximadamente 21 años y es la evidencia más temprana de que los fenómenos de un planeta se reconocieron como periódicos. El MUL.APIN contiene catálogos de estrellas y constelaciones, así como esquemas para predecir las salidas helíacas y la configuración de los planetas, longitudes de luz diurna medidas por un reloj de agua, gnomon, sombras e intercalaciones. El texto GU de Babilonia ordena las estrellas en 'cadenas' que se encuentran a lo largo de círculos de declinación y, por lo tanto, miden ascensiones rectas o intervalos de tiempo, y también emplea las estrellas del cenit, que también están separadas por diferencias de ascensión recta dadas. [7]

Durante el reinado de Nabonassar (747–733 a. C.) se produjo un aumento significativo en la calidad y frecuencia de las observaciones babilónicas. Los registros sistemáticos de fenómenos siniestros en los diarios astronómicos babilónicos que comenzaron en este momento permitieron el descubrimiento de un ciclo repetido de eclipses lunares de 18 años, por ejemplo. El astrónomo griego Ptolomeo usó más tarde el reinado de Nabonassar para fijar el comienzo de una era, ya que sintió que las primeras observaciones utilizables comenzaron en este momento.

Las últimas etapas en el desarrollo de la astronomía babilónica tuvieron lugar durante la época del Imperio seléucida (323–60 a. C.). En el siglo III a. C., los astrónomos comenzaron a utilizar "textos del año objetivo" para predecir los movimientos de los planetas. Estos textos compilaron registros de observaciones pasadas para encontrar ocurrencias repetidas de fenómenos siniestros para cada planeta. Aproximadamente al mismo tiempo, o poco después, los astrónomos crearon modelos matemáticos que les permitieron predecir estos fenómenos directamente, sin consultar registros pasados. Un notable astrónomo babilónico de esta época fue Seleuco de Seleucia, quien fue partidario del modelo heliocéntrico.

La astronomía babilónica fue la base de gran parte de lo que se hizo en la astronomía griega y helenística, en la astronomía clásica india, en el Irán sasánida, en Bizancio, en Siria, en la astronomía islámica, en Asia central y en Europa occidental. [8]

India Editar

La astronomía en el subcontinente indio se remonta al período de la civilización del valle del Indo durante el tercer milenio a. C., cuando se utilizó para crear calendarios. [9] Como la civilización del valle del Indo no dejó documentos escritos, el texto astronómico indio más antiguo que se conserva es el Vedanga Jyotisha, que data del período védico. [10] Vedanga Jyotisha describe las reglas para rastrear los movimientos del Sol y la Luna con fines rituales. Durante el siglo VI, la astronomía fue influenciada por las tradiciones astronómicas griegas y bizantinas. [9] [11]

Aryabhata (476-550), en su obra magna Aryabhatiya (499), propuso un sistema computacional basado en un modelo planetario en el que se tomó la Tierra girando sobre su eje y se dieron los períodos de los planetas con respecto al Sol. Calculó con precisión muchas constantes astronómicas, como los períodos de los planetas, los tiempos de los eclipses solares y lunares y el movimiento instantáneo de la Luna. [12] [13] [ página necesaria ] Los primeros seguidores del modelo de Aryabhata incluyeron a Varahamihira, Brahmagupta y Bhaskara II.

La astronomía avanzó durante el Imperio Shunga y se produjeron muchos catálogos de estrellas durante este tiempo. Se conoce el período Shunga [ según quien? ] como la "Edad de oro de la astronomía en la India". Vio el desarrollo de cálculos para los movimientos y lugares de varios planetas, su salida y puesta, conjunciones y el cálculo de eclipses.

Los astrónomos indios del siglo VI creían que los cometas eran cuerpos celestes que reaparecían periódicamente. Esta fue la opinión expresada en el siglo VI por los astrónomos Varahamihira y Bhadrabahu, y el astrónomo del siglo X Bhattotpala enumeró los nombres y períodos estimados de ciertos cometas, pero desafortunadamente no se sabe cómo se calcularon estas cifras o cuán precisas eran. [14]

Bhāskara II (1114-1185) fue el jefe del observatorio astronómico de Ujjain, continuando la tradición matemática de Brahmagupta. Escribió el Siddhantasiromani que consta de dos partes: Goladhyaya (esfera) y Grahaganita (matemáticas de los planetas). También calculó el tiempo que le tomó a la Tierra orbitar alrededor del Sol con nueve decimales. La Universidad Budista de Nalanda en ese momento ofrecía cursos formales de estudios astronómicos.

Otros astrónomos importantes de la India incluyen a Madhava de Sangamagrama, Nilakantha Somayaji y Jyeshtadeva, quienes fueron miembros de la escuela de astronomía y matemáticas de Kerala desde el siglo XIV hasta el siglo XVI. Nilakantha Somayaji, en su Aryabhatiyabhasya, un comentario sobre Aryabhata Aryabhatiya, desarrolló su propio sistema computacional para un modelo planetario parcialmente heliocéntrico, en el que Mercurio, Venus, Marte, Júpiter y Saturno orbitan alrededor del Sol, que a su vez orbita la Tierra, similar al sistema Tychonic propuesto más tarde por Tycho Brahe a fines del siglo XVI. . El sistema de Nilakantha, sin embargo, era matemáticamente más eficiente que el sistema Tychónico, debido a que tenía en cuenta correctamente la ecuación del centro y el movimiento latitudinal de Mercurio y Venus. La mayoría de los astrónomos de la escuela de astronomía y matemáticas de Kerala que lo siguieron aceptaron su modelo planetario. [15] [16]

Grecia y el mundo helenístico Editar

Los antiguos griegos desarrollaron la astronomía, que trataron como una rama de las matemáticas, a un nivel muy sofisticado. Los primeros modelos geométricos tridimensionales para explicar el movimiento aparente de los planetas fueron desarrollados en el siglo IV a. C. por Eudoxo de Cnido y Calipo de Cícico. Sus modelos se basaron en esferas homocéntricas anidadas centradas en la Tierra. Su contemporáneo más joven, Heraclides Ponticus, propuso que la Tierra gira alrededor de su eje.

Filósofos naturales como Platón y Aristóteles adoptaron un enfoque diferente de los fenómenos celestes. Estaban menos preocupados por desarrollar modelos matemáticos predictivos que por desarrollar una explicación de las razones de los movimientos del Cosmos. En su TimeoPlatón describió el universo como un cuerpo esférico dividido en círculos que llevan los planetas y gobernado según intervalos armónicos por un alma del mundo. [17] Aristóteles, basándose en el modelo matemático de Eudoxo, propuso que el universo estaba formado por un complejo sistema de esferas concéntricas, cuyos movimientos circulares se combinaban para llevar los planetas alrededor de la Tierra. [18] Este modelo cosmológico básico prevaleció, en varias formas, hasta el siglo XVI.

En el siglo III a. C., Aristarco de Samos fue el primero en sugerir un sistema heliocéntrico, aunque solo sobreviven descripciones fragmentarias de su idea. [19] Eratóstenes estimó la circunferencia de la Tierra con gran precisión. [20]

La astronomía geométrica griega se desarrolló a partir del modelo de esferas concéntricas para emplear modelos más complejos en los que un círculo excéntrico llevaría alrededor de un círculo más pequeño, llamado un epiciclo que a su vez llevaba alrededor de un planeta. El primer modelo de este tipo se atribuye a Apolonio de Perge y Hiparco de Nicea llevó a cabo nuevos desarrollos en el siglo II a. C. Hiparco hizo una serie de otras contribuciones, incluida la primera medición de la precesión y la compilación del primer catálogo de estrellas en el que propuso nuestro moderno sistema de magnitudes aparentes.

El mecanismo de Antikythera, un dispositivo de observación astronómico griego antiguo para calcular los movimientos del Sol y la Luna, posiblemente los planetas, data de aproximadamente 150-100 aC, y fue el primer antepasado de una computadora astronómica. Fue descubierto en un antiguo naufragio frente a la isla griega de Antikythera, entre Kythera y Creta. El dispositivo se hizo famoso por el uso de un engranaje diferencial, que antes se creía inventado en el siglo XVI, y la miniaturización y complejidad de sus partes, comparable a un reloj fabricado en el siglo XVIII. El mecanismo original se exhibe en la colección de Bronce del Museo Arqueológico Nacional de Atenas, acompañado de una réplica.

Dependiendo del punto de vista del historiador, el apogeo o la corrupción de la astronomía física griega se ve con Ptolomeo de Alejandría, quien escribió la clásica presentación completa de la astronomía geocéntrica, la Sintaxis Megale (Gran Síntesis), más conocida por su título árabe Almagesto, que tuvo un efecto duradero en la astronomía hasta el Renacimiento. En su Hipótesis planetariasPtolomeo se aventuró en el ámbito de la cosmología, desarrollando un modelo físico de su sistema geométrico, en un universo muchas veces más pequeño que la concepción más realista de Aristarco de Samos cuatro siglos antes.

Egipto Editar

La orientación precisa de las pirámides egipcias proporciona una demostración duradera del alto grado de habilidad técnica para observar los cielos alcanzados en el tercer milenio antes de Cristo. Se ha demostrado que las pirámides estaban alineadas hacia la estrella polar, que, debido a la precesión de los equinoccios, era en ese momento Thuban, una estrella tenue en la constelación de Draco. [22] La evaluación del sitio del templo de Amón-Ra en Karnak, teniendo en cuenta el cambio en el tiempo de la oblicuidad de la eclíptica, ha demostrado que el Gran Templo estaba alineado con la salida del sol de pleno invierno. [23] La longitud del corredor por el que viajaría la luz del sol tendría una iluminación limitada en otras épocas del año. Los egipcios también encontraron la posición de Sirio (la estrella del perro), quien creían que era Anubis, su dios con cabeza de chacal que se movía a través de los cielos. Su posición era fundamental para su civilización, ya que cuando se elevó heliacal en el este antes del amanecer predijo la inundación del Nilo. También es de donde obtenemos la frase 'días caninos de verano'.

La astronomía jugó un papel considerable en materia religiosa para fijar las fechas de las fiestas y determinar las horas de la noche. Se conservan los títulos de varios libros del templo que registran los movimientos y fases del sol, la luna y las estrellas. El levantamiento de Sirio (egipcio: Sopdet, griego: Sothis) al comienzo de la inundación fue un punto particularmente importante para fijar en el calendario anual.

Escribiendo en la era romana, Clemente de Alejandría da una idea de la importancia de las observaciones astronómicas para los ritos sagrados:

Y después de que el Cantante avanza el Astrólogo (ὡροσκόπος), con un horologium (ὡρολόγιον) en su mano, y un palma (φοίνιξ), los símbolos de la astrología. Debe saber de memoria los libros astrológicos herméticos, que son cuatro. De estos, uno trata sobre la disposición de las estrellas fijas que son visibles, uno en las posiciones del Sol y la Luna y cinco planetas, uno en las conjunciones y fases del Sol y la Luna y uno se refiere a sus salidas. [24]

Los instrumentos del astrólogo (horologium y palma) son una plomada y un instrumento de observación [ aclaración necesaria ]. Se han identificado con dos objetos inscritos en el Museo de Berlín, un asa corta de la que se colgó una plomada y una rama de palma con una ranura en el extremo más ancho. Este último se mantuvo cerca del ojo, el primero en la otra mano, tal vez con el brazo extendido. Los libros "herméticos" a los que se refiere Clemente son los textos teológicos egipcios, que probablemente no tienen nada que ver con el hermetismo helenístico. [25]

De las tablas de estrellas en el techo de las tumbas de Ramsés VI y Ramsés IX parece que para fijar las horas de la noche un hombre sentado en el suelo se enfrentó al Astrólogo en tal posición que pasó la línea de observación de la estrella polar. sobre la mitad de su cabeza. En los diferentes días del año, cada hora estaba determinada por una estrella fija que culminaba o casi culminaba en ella, y la posición de estas estrellas en ese momento se da en las tablas como en el centro, en el ojo izquierdo, en el hombro derecho. , etc. Según los textos, en la fundación o reconstrucción de templos el eje norte estaba determinado por el mismo aparato, y podemos concluir que era el habitual para las observaciones astronómicas. En manos cuidadosas, puede dar resultados con un alto grado de precisión.

China Editar

La astronomía de Asia Oriental comenzó en China. El término solar se completó en el período de los Reinos Combatientes. El conocimiento de la astronomía china se introdujo en el este de Asia.

La astronomía en China tiene una larga historia. Se mantuvieron registros detallados de las observaciones astronómicas desde aproximadamente el siglo VI a. C., hasta la introducción de la astronomía occidental y el telescopio en el siglo XVII. Los astrónomos chinos pudieron predecir con precisión los eclipses.

Gran parte de la astronomía china primitiva tenía como objetivo el cronometraje. Los chinos usaban un calendario lunisolar, pero debido a que los ciclos del Sol y la Luna son diferentes, los astrónomos a menudo prepararon nuevos calendarios y realizaron observaciones con ese propósito.

La adivinación astrológica también fue una parte importante de la astronomía. Los astrónomos tomaron nota cuidadosamente de las "estrellas invitadas" (chino: 客 星 pinyin: kèxīng lit .: 'estrella invitada') que apareció de repente entre las estrellas fijas. Fueron los primeros en registrar una supernova, en los Anales Astrológicos de Houhanshu en el año 185 d.C. Además, la supernova que creó la Nebulosa del Cangrejo en 1054 es un ejemplo de una "estrella invitada" observada por los astrónomos chinos, aunque no fue registrada por sus contemporáneos europeos. Los registros astronómicos antiguos de fenómenos como supernovas y cometas se utilizan a veces en estudios astronómicos modernos.

El primer catálogo de estrellas del mundo fue realizado por Gan De, un astrónomo chino, en el siglo IV a. C.

Mesoamérica Editar

Los códices astronómicos mayas incluyen tablas detalladas para calcular las fases de la Luna, la recurrencia de los eclipses y la aparición y desaparición de Venus como estrella matutina y vespertina. Los mayas basaron sus calendarios en los ciclos cuidadosamente calculados de las Pléyades, el Sol, la Luna, Venus, Júpiter, Saturno, Marte, y también tenían una descripción precisa de los eclipses como se muestra en el Códice de Dresde, así como la eclíptica. o zodíaco, y la Vía Láctea fue crucial en su cosmología. [26] Se cree que varias estructuras mayas importantes se han orientado hacia las elevaciones y escenarios extremos de Venus. Para los antiguos mayas, Venus era el patrón de la guerra y se cree que muchas batallas registradas se sincronizaron con los movimientos de este planeta. Marte también se menciona en códices astronómicos conservados y mitología temprana. [27]

Aunque el calendario maya no estaba ligado al sol, John Teeple ha propuesto que los mayas calcularon el año solar con mayor precisión que el calendario gregoriano. [28] Tanto la astronomía como un intrincado esquema numerológico para la medición del tiempo eran componentes de vital importancia de la religión maya.

Desde 1990, nuestra comprensión de los europeos prehistóricos ha cambiado radicalmente por los descubrimientos de antiguos artefactos astronómicos en toda Europa. Los artefactos demuestran que los europeos del Neolítico y la Edad del Bronce tenían un conocimiento sofisticado de matemáticas y astronomía.

Entre los descubrimientos se encuentran:

  • El arqueólogo del Paleolítico Alexander Marshack presentó una teoría en 1972 de que los palos de huesos de lugares como África y Europa posiblemente desde hace tanto como 35.000 a. C. podrían estar marcados de manera que rastrearan las fases de la Luna, [29] [página necesaria] una interpretación que ha sido criticada. [30]
  • El calendario de Warren Field en el valle del río Dee, en el Aberdeenshire de Escocia. Excavado por primera vez en 2004, pero solo en 2013 revelado como un hallazgo de gran importancia, hasta la fecha es el calendario más antiguo conocido del mundo, creado alrededor del 8000 a. C. y anterior a todos los demás calendarios en unos 5.000 años. El calendario toma la forma de un monumento mesolítico temprano que contiene una serie de 12 hoyos que parecen ayudar al observador a rastrear los meses lunares imitando las fases de la Luna. También se alinea con la salida del sol en el solsticio de invierno, coordinando así el año solar con los ciclos lunares. El monumento se había mantenido y remodelado periódicamente, tal vez hasta cientos de veces, en respuesta a los ciclos solares / lunares cambiantes, a lo largo de 6.000 años, hasta que el calendario dejó de utilizarse hace unos 4.000 años. [31] [32] [33] [34] se encuentra en Alemania y pertenece a la cultura de la alfarería lineal. Descubierto por primera vez en 1991, su importancia solo quedó clara después de que los resultados de las excavaciones arqueológicas estuvieron disponibles en 2004. El sitio es uno de los cientos de recintos circulares similares construidos en una región que abarca Austria, Alemania y la República Checa durante un período de 200 años a partir de poco después del 5000 a. C. [35]
  • El disco celeste de Nebra es un disco de bronce de la Edad de Bronce que fue enterrado en Alemania, no lejos del círculo de Goseck, alrededor del 1600 a. C. Mide unos 30 cm de diámetro con una masa de 2,2 kg y muestra una pátina azul verdosa (por oxidación) con incrustaciones de símbolos dorados. Encontrado por ladrones arqueológicos en 1999 y recuperado en Suiza en 2002, pronto fue reconocido como un descubrimiento espectacular, entre los más importantes del siglo XX. [36] [37] Las investigaciones revelaron que el objeto había estado en uso alrededor de 400 años antes del entierro (2000 aC), pero que su uso había sido olvidado en el momento del entierro. El oro con incrustaciones representaba la luna llena, una luna creciente de unos 4 o 5 días de edad y el cúmulo de estrellas de las Pléyades en una disposición específica que forma la representación más antigua conocida de los fenómenos celestes. Doce meses lunares pasan en 354 días, lo que requiere un calendario para insertar un mes bisiesto cada dos o tres años para mantenerse sincronizado con las estaciones del año solar (haciéndolo lunisolar). Las primeras descripciones conocidas de esta coordinación fueron registradas por los babilonios en los siglos VI o VII a. C., más de mil años después. Esas descripciones verificaron el conocimiento antiguo de la representación celestial del disco celestial de Nebra como la disposición precisa necesaria para juzgar cuándo insertar el mes intercalario en un calendario lunisolar, convirtiéndolo en un reloj astronómico para regular dicho calendario mil años o más antes que cualquier otro método conocido. . [38]
  • El sitio de Kokino, descubierto en 2001, se asienta sobre un cono volcánico extinto a una altura de 1.013 metros (3.323 pies), que ocupa aproximadamente 0,5 hectáreas con vistas al campo circundante en Macedonia del Norte. Un observatorio astronómico de la Edad de Bronce se construyó allí alrededor de 1900 a.C. y sirvió continuamente a la comunidad cercana que vivió allí hasta aproximadamente 700 a.C. El espacio central se utilizó para observar la salida del sol y la luna llena. Tres marcas ubican el amanecer en los solsticios de verano e invierno y en los dos equinoccios. Cuatro más dan las declinaciones mínima y máxima de la luna llena: en verano y en invierno. Dos miden la duración de los meses lunares. Juntos, reconcilian los ciclos solares y lunares al marcar las 235 lunaciones que ocurren durante 19 años solares, regulando un calendario lunar. En una plataforma separada del espacio central, en una elevación más baja, se hicieron cuatro asientos de piedra (tronos) en alineación norte-sur, junto con un marcador de trinchera cortado en el muro este. Este marcador permite que la luz del sol naciente caiga solo sobre el segundo trono, en pleno verano (alrededor del 31 de julio). Se usaba para la ceremonia ritual que vinculaba al gobernante con el dios sol local, y también marcaba el final de la temporada de crecimiento y la época de la cosecha. [39] de Alemania, Francia y Suiza que datan de 1400-800 a. C. están asociados con la cultura del campo de urnas de la Edad del Bronce. Los sombreros dorados están decorados con un motivo en espiral del Sol y la Luna. Probablemente eran una especie de calendario utilizado para calibrar entre los calendarios lunar y solar. [40] [41] La erudición moderna ha demostrado que la ornamentación de los conos de pan de oro del tipo Schifferstadt, al que pertenece el ejemplo del Sombrero de Oro de Berlín, representa secuencias sistemáticas en términos de número y tipos de adornos por banda. Un estudio detallado del ejemplo de Berlín, que es el único que se conserva completamente, mostró que los símbolos probablemente representan un calendario lunisolar. El objeto habría permitido la determinación de fechas o períodos tanto en el calendario lunar como en el solar. [42]

The Arabic and the Persian world under Islam had become highly cultured, and many important works of knowledge from Greek astronomy and Indian astronomy and Persian astronomy were translated into Arabic, used and stored in libraries throughout the area. An important contribution by Islamic astronomers was their emphasis on observational astronomy. [43] This led to the emergence of the first astronomical observatories in the Muslim world by the early 9th century. [44] [45] Zij star catalogues were produced at these observatories.

In the 10th century, Abd al-Rahman al-Sufi (Azophi) carried out observations on the stars and described their positions, magnitudes, brightness, and colour and drawings for each constellation in his Book of Fixed Stars. He also gave the first descriptions and pictures of "A Little Cloud" now known as the Andromeda Galaxy. He mentions it as lying before the mouth of a Big Fish, an Arabic constellation. This "cloud" was apparently commonly known to the Isfahan astronomers, very probably before 905 AD. [46] The first recorded mention of the Large Magellanic Cloud was also given by al-Sufi. [47] [48] In 1006, Ali ibn Ridwan observed SN 1006, the brightest supernova in recorded history, and left a detailed description of the temporary star.

In the late 10th century, a huge observatory was built near Tehran, Iran, by the astronomer Abu-Mahmud al-Khujandi who observed a series of meridian transits of the Sun, which allowed him to calculate the tilt of the Earth's axis relative to the Sun. He noted that measurements by earlier (Indian, then Greek) astronomers had found higher values for this angle, possible evidence that the axial tilt is not constant but was in fact decreasing. [49] [50] In 11th-century Persia, Omar Khayyám compiled many tables and performed a reformation of the calendar that was more accurate than the Julian and came close to the Gregorian.

Other Muslim advances in astronomy included the collection and correction of previous astronomical data, resolving significant problems in the Ptolemaic model, the development of the universal latitude-independent astrolabe by Arzachel, [51] the invention of numerous other astronomical instruments, Ja'far Muhammad ibn Mūsā ibn Shākir's belief that the heavenly bodies and celestial spheres were subject to the same physical laws as Earth, [52] the first elaborate experiments related to astronomical phenomena, the introduction of exacting empirical observations and experimental techniques, [53] and the introduction of empirical testing by Ibn al-Shatir, who produced the first model of lunar motion which matched physical observations. [54]

Natural philosophy (particularly Aristotelian physics) was separated from astronomy by Ibn al-Haytham (Alhazen) in the 11th century, by Ibn al-Shatir in the 14th century, [55] and Qushji in the 15th century, leading to the development of an astronomical physics. [56]

After the significant contributions of Greek scholars to the development of astronomy, it entered a relatively static era in Western Europe from the Roman era through the 12th century. This lack of progress has led some astronomers to assert that nothing happened in Western European astronomy during the Middle Ages. [57] Recent investigations, however, have revealed a more complex picture of the study and teaching of astronomy in the period from the 4th to the 16th centuries. [58]

Western Europe entered the Middle Ages with great difficulties that affected the continent's intellectual production. The advanced astronomical treatises of classical antiquity were written in Greek, and with the decline of knowledge of that language, only simplified summaries and practical texts were available for study. The most influential writers to pass on this ancient tradition in Latin were Macrobius, Pliny, Martianus Capella, and Calcidius. [59] In the 6th century Bishop Gregory of Tours noted that he had learned his astronomy from reading Martianus Capella, and went on to employ this rudimentary astronomy to describe a method by which monks could determine the time of prayer at night by watching the stars. [60]

In the 7th century the English monk Bede of Jarrow published an influential text, On the Reckoning of Time, providing churchmen with the practical astronomical knowledge needed to compute the proper date of Easter using a procedure called the computus. This text remained an important element of the education of clergy from the 7th century until well after the rise of the Universities in the 12th century. [61]

The range of surviving ancient Roman writings on astronomy and the teachings of Bede and his followers began to be studied in earnest during the revival of learning sponsored by the emperor Charlemagne. [62] By the 9th century rudimentary techniques for calculating the position of the planets were circulating in Western Europe medieval scholars recognized their flaws, but texts describing these techniques continued to be copied, reflecting an interest in the motions of the planets and in their astrological significance. [63]

Building on this astronomical background, in the 10th century European scholars such as Gerbert of Aurillac began to travel to Spain and Sicily to seek out learning which they had heard existed in the Arabic-speaking world. There they first encountered various practical astronomical techniques concerning the calendar and timekeeping, most notably those dealing with the astrolabe. Soon scholars such as Hermann of Reichenau were writing texts in Latin on the uses and construction of the astrolabe and others, such as Walcher of Malvern, were using the astrolabe to observe the time of eclipses in order to test the validity of computistical tables. [64]

By the 12th century, scholars were traveling to Spain and Sicily to seek out more advanced astronomical and astrological texts, which they translated into Latin from Arabic and Greek to further enrich the astronomical knowledge of Western Europe. The arrival of these new texts coincided with the rise of the universities in medieval Europe, in which they soon found a home. [65] Reflecting the introduction of astronomy into the universities, John of Sacrobosco wrote a series of influential introductory astronomy textbooks: the Sphere, a Computus, a text on the Quadrant, and another on Calculation. [66]

In the 14th century, Nicole Oresme, later bishop of Liseux, showed that neither the scriptural texts nor the physical arguments advanced against the movement of the Earth were demonstrative and adduced the argument of simplicity for the theory that the Earth moves, and no the heavens. However, he concluded "everyone maintains, and I think myself, that the heavens do move and not the earth: For God hath established the world which shall not be moved." [67] In the 15th century, Cardinal Nicholas of Cusa suggested in some of his scientific writings that the Earth revolved around the Sun, and that each star is itself a distant sun.

During the renaissance period, astronomy began to undergo a revolution in thought known as the Copernican Revolution, which gets the name from the astronomer Nicolaus Copernicus, who proposed a heliocentric system, in which the planets revolved around the Sun and not the Earth. Su De revolutionibus orbium coelestium was published in 1543. [68] While in the long term this was a very controversial claim, in the very beginning it only brought minor controversy. [68] The theory became the dominant view because many figures, most notably Galileo Galilei, Johannes Kepler and Isaac Newton championed and improved upon the work. Other figures also aided this new model despite not believing the overall theory, like Tycho Brahe, with his well-known observations. [69]

Brahe, a Danish noble, was an essential astronomer in this period. [69] He came on the astronomical scene with the publication of De nova stella, in which he disproved conventional wisdom on the supernova SN 1572 [69] (As bright as Venus at its peak, SN 1572 later became invisible to the naked eye, disproving the Aristotelian doctrine of the immutability of the heavens.) [70] [71] He also created the Tychonic system, where the Sun and Moon and the stars revolve around the Earth, but the other five planets revolve around the Sun. This system blended the mathematical benefits of the Copernican system with the "physical benefits" of the Ptolemaic system. [72] This was one of the systems people believed in when they did not accept heliocentrism, but could no longer accept the Ptolemaic system. [72] He is most known for his highly accurate observations of the stars and the solar system. Later he moved to Prague and continued his work. In Prague he was at work on the Rudolphine Tables, that were not finished until after his death. [73] The Rudolphine Tables was a star map designed to be more accurate than either the Alfonsine tables, made in the 1300s, and the Prutenic Tables, which were inaccurate. [73] He was assisted at this time by his assistant Johannes Kepler, who would later use his observations to finish Brahe's works and for his theories as well. [73]

After the death of Brahe, Kepler was deemed his successor and was given the job of completing Brahe's uncompleted works, like the Rudolphine Tables. [73] He completed the Rudolphine Tables in 1624, although it was not published for several years. [73] Like many other figures of this era, he was subject to religious and political troubles, like the Thirty Years' War, which led to chaos that almost destroyed some of his works. Kepler was, however, the first to attempt to derive mathematical predictions of celestial motions from assumed physical causes. He discovered the three Kepler's laws of planetary motion that now carry his name, those laws being as follows:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit. [74]

With these laws, he managed to improve upon the existing heliocentric model. The first two were published in 1609. Kepler's contributions improved upon the overall system, giving it more credibility because it adequately explained events and could cause more reliable predictions. Before this, the Copernican model was just as unreliable as the Ptolemaic model. This improvement came because Kepler realized the orbits were not perfect circles, but ellipses.

Galileo Galilei was among the first to use a telescope to observe the sky, and after constructing a 20x refractor telescope. [75] He discovered the four largest moons of Jupiter in 1610, which are now collectively known as the Galilean moons, in his honor. [76] This discovery was the first known observation of satellites orbiting another planet. [76] He also found that our Moon had craters and observed, and correctly explained, sunspots, and that Venus exhibited a full set of phases resembling lunar phases. [77] [78] Galileo argued that these facts demonstrated incompatibility with the Ptolemaic model, which could not explain the phenomenon and would even contradict it. [77] With the moons it demonstrated that the Earth does not have to have everything orbiting it and that other parts of the Solar System could orbit another object, such as the Earth orbiting the Sun. [76] In the Ptolemaic system the celestial bodies were supposed to be perfect so such objects should not have craters or sunspots. [79] The phases of Venus could only happen in the event that Venus' orbit is insides Earth's orbit, which could not happen if the Earth was the center. He, as the most famous example, had to face challenges from church officials, more specifically the Roman Inquisition. [80] They accused him of heresy because these beliefs went against the teachings of the Roman Catholic Church and were challenging the Catholic church's authority when it was at its weakest. [80] While he was able to avoid punishment for a little while he was eventually tried and pled guilty to heresy in 1633. [80] Although this came at some expense, his book was banned, and he was put under house arrest until he died in 1642. [81]

Sir Isaac Newton developed further ties between physics and astronomy through his law of universal gravitation. Realizing that the same force that attracts objects to the surface of the Earth held the Moon in orbit around the Earth, Newton was able to explain – in one theoretical framework – all known gravitational phenomena. In his Philosophiæ Naturalis Principia Mathematica, he derived Kepler's laws from first principles. Those first principles are as follows:

  1. In an inertial frame of reference, an object either remains at rest or continues to move at constant velocity, unless acted upon by a force.
  2. In an inertial reference frame, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: F = ma. (It is assumed here that the mass m is constant)
  3. When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body. [82]

Thus while Kepler explained how the planets moved, Newton accurately managed to explain why the planets moved the way they do. Newton's theoretical developments laid many of the foundations of modern physics.

Outside of England, Newton's theory took some time to become established. Descartes' theory of vortices held sway in France, and Huygens, Leibniz and Cassini accepted only parts of Newton's system, preferring their own philosophies. Voltaire published a popular account in 1738. [83] In 1748, the French Academy of Sciences offered a reward for solving the perturbations of Jupiter and Saturn which was eventually solved by Euler and Lagrange. Laplace completed the theory of the planets, publishing from 1798 to 1825. The early origins of the solar nebular model of planetary formation had begun.

Edmund Halley succeeded Flamsteed as Astronomer Royal in England and succeeded in predicting the return in 1758 of the comet that bears his name. Sir William Herschel found the first new planet, Uranus, to be observed in modern times in 1781. The gap between the planets Mars and Jupiter disclosed by the Titius–Bode law was filled by the discovery of the asteroids Ceres and 2 Pallas Pallas in 1801 and 1802 with many more following.

At first, astronomical thought in America was based on Aristotelian philosophy, [84] but interest in the new astronomy began to appear in Almanacs as early as 1659. [85]

In the 19th century, Joseph von Fraunhofer discovered that when sunlight was dispersed, a multitude of spectral lines were observed (regions where there was less or no light). Experiments with hot gases showed that the same lines could be observed in the spectra of gases, with specific lines corresponding to unique elements. It was proved that the chemical elements found in the Sun (chiefly hydrogen and helium) were also found on Earth. During the 20th century spectroscopy (the study of these lines) advanced, especially because of the advent of quantum physics, which was necessary to understand the observations.

Although in previous centuries noted astronomers were exclusively male, at the turn of the 20th century women began to play a role in the great discoveries. In this period prior to modern computers, women at the United States Naval Observatory (USNO), Harvard University, and other astronomy research institutions began to be hired as human "computers", who performed the tedious calculations while scientists performed research requiring more background knowledge. [86] A number of discoveries in this period were originally noted by the women "computers" and reported to their supervisors. For example, at the Harvard Observatory Henrietta Swan Leavitt discovered the cepheid variable star period-luminosity relation which she further developed into a method of measuring distance outside of the Solar System.

Annie Jump Cannon, also at Harvard, organized the stellar spectral types according to stellar temperature. In 1847, Maria Mitchell discovered a comet using a telescope. According to Lewis D. Eigen, Cannon alone, "in only 4 years discovered and catalogued more stars than all the men in history put together." [87] Most of these women received little or no recognition during their lives due to their lower professional standing in the field of astronomy. Although their discoveries and methods are taught in classrooms around the world, few students of astronomy can attribute the works to their authors or have any idea that there were active female astronomers at the end of the 19th century. [ cita necesaria ]

Most of our current knowledge was gained during the 20th century. With the help of the use of photography, fainter objects were observed. The Sun was found to be part of a galaxy made up of more than 10 10 stars (10 billion stars). The existence of other galaxies, one of the matters of the great debate, was settled by Edwin Hubble, who identified the Andromeda nebula as a different galaxy, and many others at large distances and receding, moving away from our galaxy.

Physical cosmology, a discipline that has a large intersection with astronomy, made huge advances during the 20th century, with the model of the hot Big Bang heavily supported by the evidence provided by astronomy and physics, such as the redshifts of very distant galaxies and radio sources, the cosmic microwave background radiation, Hubble's law and cosmological abundances of elements.

In the 19th century, scientists began discovering forms of light which were invisible to the naked eye: X-Rays, gamma rays, radio waves, microwaves, ultraviolet radiation, and infrared radiation. This had a major impact on astronomy, spawning the fields of infrared astronomy, radio astronomy, x-ray astronomy and finally gamma-ray astronomy. With the advent of spectroscopy it was proven that other stars were similar to the Sun, but with a range of temperatures, masses and sizes. The existence of our galaxy, the Milky Way, as a separate group of stars was only proven in the 20th century, along with the existence of "external" galaxies, and soon after, the expansion of the universe seen in the recession of most galaxies from us.


Ancient Astronomers Developed First Known Writing - History


Click here for print-quality photos.
Additional press releases:
Oriental Institute opens major gallery on ancient Mesopotamia

The country we know today as Iraq has a history as a civilization going back more than 5,000 years. The ancient Greeks, who recognized the role the Tigris and Euphrates rivers played in the area’s development, called it Mesopotamia (“land between the rivers”).

By 3,500 B.C., city-states had emerged in southern Mesopotamia. These Sumerian city-states included Ur, which according to the Bible was the birthplace of Abraham. The city of Babylon became the capital of much of the area under King Hammurabi (1,792-1,750 B.C.), who is famous for the collection of laws known as the Code of Hammurabi. The northern part of the country, known as Assyria, rose to prominence during the first half of the first millennium (900-630 B.C.). King Nebuchadnezzar II (604-562 B.C.) undertook vast building projects at Babylon that brought it to the height of its splendor. Babylon fell to the Persians in 539 B.C. The Persians were, in turn, conquered by the Greeks, led by Alexander the Great, in 331 B.C.

The ancient Mesopotamians were the first known to use many things we now consider essential. Here are some examples:


Ancient Egyptian Writing Facts For Kids

The Ancient Egyptians thought it was very important to keep a record of information about their government and religion.

To accomplish this goal, they created several written scripts. The most famous of these is hieroglyphics, but the Ancient Egyptians used different forms of writing for different purposes.

Scribes recorded important information on papyrus scrolls, as well as on the walls of tombs and temples.

Hieroglyphics

According to Ancient Egyptian mythology, hieroglyphs were created by the god Thoth. This type of writing was considered sacred, powerful, and holy.

Hieroglyphs are picture symbols. They can stand for the object they represent, but usually each symbol corresponds to the sound of a certain letter or syllable.

For example, the symbol of a foot represents the “B” sound. A rectangle represents the “sh” sound.

Hieroglyphics were used mainly for formal writing on the walls of tombs and temples. Some are in full color, while others are basic outlines.

Scholars believe that most writing systems probably began in this way (with symbols or pictures instead of letters), but most cultures do not have a record of these early forms of writing.

The Ancient Egyptians, on the other hand, purposely preserved hieroglyphics because they believed that these symbols came from the gods and held powerful magic.

Hieratic Script

Shortly after hieroglyphics were developed, the Ancient Egyptians also came up with a system called hieratic script.

The thing about hieroglyphics was that they were complicated and time-consuming for the scribes. Although there were eventually 24 basic consonant symbols, there were over 800 different symbols total.

So, hieratic script was a simplified version of these complicated hieroglyphs. While hieroglyphics were used mostly in formal writing, hieratic script was used more in day-to-day written communication.

It was first used in religious texts, but hieratic script eventually appeared in business administration, personal and business letters, and legal documents like court records and wills.

Demotic Script

Around 800 BCE, hieratic script developed into a cursive script known as “abnormal hieratic.” It was then replaced by demotic script, which was known as popular writing.

Demotic script was used in every kind of writing. Hieroglyphics continued to be used for formal inscriptions on temples, tombs, statues, and so on.

The Ancient Egyptians called demotic script “sehk-shat,” meaning “writing for documents.” It was the most popular form of Ancient Egyptian writing for the next 1000 years.

Coptic Script

Demotic script was eventually replaced by Coptic script when Egypt became a province of Rome. Coptic script was the language of the Copts, or Egyptian Christians.

These Egyptian Christians spoke Egyptian but wrote in the Greek alphabet, with some additions from demotic script.

Coptic script was used to make records of many important documents, including the New Testament of the Christian Bible. It also helped future generations unlock the meaning of the Egyptian hieroglyphics.

Rosetta Stone

When Napoleon’s army invaded Egypt in 1799, a lieutenant named Pierre Bouchard discovered the Rosetta Stone. This was a proclamation from Ptolemy V written in Greek, demotic, and hieroglyphics.

The same message was written in all three languages or scripts on the stone. Scholars used the Rosetta Stone to help translate and understand hieroglyphics.

A historian and linguist named Jean-Francois Champollion led the way. He understood Coptic (and many other languages), which was similar to demotic and helped him translate.

Champollion was the first to understand that hieroglyphs could be alphabetic (representing a letter sound), syllabic (representing a syllable sound), or even determinative (representing the meaning of the word itself).

The discovery of the Rosetta Stone helped scholars translate Egypt’s ancient language and uncover the mysteries of Ancient Egyptian history and culture.

Other Interesting Facts About Ancient Egyptian Writing

Scholars aren’t sure if Ancient Egyptian writing came before Sumerian Cuneiform writing or if it originated around the same time.

It’s possible that the Ancient Egyptians were the first society to develop a writing system.

Another reason hieroglyphs were complicated is that they can be written from left to right, right to left, or even in vertical lines running from top to bottom.

Luckily, there’s a trick to figuring out the direction of the writing: Whichever way the people and animals are facing is the beginning of the line.

In Ancient Egypt, not everyone knew how to read and write. The people who hizo learn to read and write were called scribes. Most scribes were men, but some female doctors were also trained as scribes so they could read medical texts.

Scribes had to attend a special school to learn hieroglyphic and hieratic script. They practiced writing on pieces of pottery, flakes of limestone, or on sheets of papyrus.

Speaking of papyrus, the Ancient Egyptians were the first to discover that papyrus, a tall aquatic plant, could be used to make paper.


Key Facts & Information

EARLY HISTORY

  • Ancient astronomers were able to differentiate between stars and planets, as stars remain relatively fixed over the centuries while planets will move an appreciable amount during a comparatively short time. Early cultures identified celestial objects with gods and spirits. They related these objects to phenomena such as rain, drought, seasons, and tides.
  • It is generally believed that the first astronomers were priests, and that they understood celestial objects and events to be manifestations of the divine, hence early astronomy’s connection to what is now called astrology.
  • We have been told that the Earth revolves around the Sun and probably know that planets other than our own have moons, and the way to test to see whether or not something is true is by experimenting. Thousands of years ago, these things were not widely known. The heavens above were anyone’s guess, and the way things were was just the way the gods had made them.
  • It was felt that there was no need to truly understand them or put them in any kind of order. See some of the most famous astronomers and physicists throughout history, from humanity’s earliest observations of celestial events to today’s investigations of deep sky objects that hold the secrets of the universe.

PTOLEMY

  • Claudius Ptolemy was an astronomer and mathematician. He believed that the Earth was the center of the Universe. The word for earth in Greek is geo, so we call this idea a “geocentric” theory. Even starting with this incorrect theory, he was able to combine what he saw the stars’ movements were with mathematics, especially geometry, to predict the movements of the planets.
  • His famous work was called the Almagest. In order to make his predictions true, he worked out that the planets must move in epicycles, smaller circles, and the Earth itself moved along an equant.
  • None of this was true, but it made the math work for his predictions. This flawed view of the Universe was accepted for many centuries.

ARISTOTLE

  • Aristotle is sometimes called the Grandfather of Science. He studied under the philosopher Plato and later started his own school.
  • He, too, believed in a geocentric Universe and that the planets and stars were perfect spheres though Earth itself was not. He further thought that the movements of the planets and stars must be circular since they were perfect and if the motions were circular, then they could go on forever.
  • He was one of the first to study plants, animals, and people in a scientific way, and he believed in experimenting whenever possible and developed logical ways of thinking.

COPERNICUS

  • Over a thousand years later, Nicolaus Copernicus came up with a radical way of looking at the Universe. His heliocentric system put the Sun (helio) at the center of our system. He was not the first to have this theory.
  • Earlier starwatchers had believed the same, but it was Copernicus who brought it to the world of the Renaissance and used his own observations of the movements of the planets to back up his idea.
  • His ideas, including the revelation that the Earth rotates on its axis, were too different for most of the scholars of his time to accept. Those who did study his work intact often did so in secret. They were called Copernicans.

GALILEO

  • Born in Pisa, Italy, approximately 100 years after Copernicus, Galileo became a brilliant student with an amazing genius for invention and observation. He had his own ideas on how motion really worked, as opposed to what Aristotle had taught, and devised a telescope that could enlarge objects up to 20 times.
  • He was able to use this telescope to prove the truth of the Copernican system of heliocentrism. He published his observations which went against the established teaching of the Church.
  • He was brought to trial and although he made a confession of wrongdoing, he was still kept under house arrest for the rest of his life. But it was too late to lock away the knowledge that Galileo shared. Other scientists, including Sir Isaac Newton and Johannes Kepler, seized its importance and were able to learn even more about the ways of the world and the heavens beyond.

LEGACY

  • These early scientists’ legacy continues to this day. As time goes on, people use instruments, science, math, reasoning, and creativity to learn more about the secrets of the Universe. In this way, people are directly linked to the astronomers of centuries ago who gave us direction to discover more about the dances of the planets and the nature of the stars.

Early Astronomers Worksheets

This is a fantastic bundle which includes everything you need to know about early astronomers across 18 in-depth pages. Estos son ready-to-use Early Astronomers worksheets that are perfect for teaching students about the astronomy which is a natural science that studies celestial objects and phenomena, such as stars, planets, comets, and galaxies. It applies mathematics, physics, and chemistry in an effort to explain the origin of those objects and phenomena and their evolution. More generally, all phenomena that originate outside Earth’s atmosphere are within the purview of astronomy.

Complete List Of Included Worksheets

  • Early Astronomer Facts
  • The Astronomers
  • See Qualities
  • Early Telescopes
  • Heliocentric Theory
  • Galileo’s Telescope
  • Ptolemy’s Almagest
  • Astronomy of Today
  • Other Astronomers
  • Copernicus and His Fate
  • Fave Astronomer

Link/cite this page

If you reference any of the content on this page on your own website, please use the code below to cite this page as the original source.

Use With Any Curriculum

These worksheets have been specifically designed for use with any international curriculum. You can use these worksheets as-is, or edit them using Google Slides to make them more specific to your own student ability levels and curriculum standards.


Ancient Civilizations and Early Writing

Writing evolved independently in various regions, such as the Near East, China, the Indus Valley and Central America. The writing systems that emerged in each of these regions are different and did not influence each other. The earliest known writing system was cuneiform in Mesopotamia, which dates back to 3,100 BC.

Why was writing invented? Perhaps the answer can be found in the first written messages. In most places where writing developed independently, the oldest documents that remain are labels and lists, or the names of rulers. In general, some were much richer than others in the societies that produced these documents, and power was concentrated in the hands of small groups. Therefore, writing is assumed to have been invented as the members of these groups had to organize the distribution of goods and people in order to maintain control over both.

In many societies, writing was also invented for other purposes. For example, in ancient Mesopotamia contracts and other commercial documents, letters, laws, religious rituals and even literary works were written down. On the other hand, in Central America writing was limited for a long time to inscriptions on monuments relating to the monarchy. In these societies where writing was restricted to a small dominant group, there were actually very few people who could read and write.

Logographic Writing

Depending on how they work, writing systems are classified as logographic, syllabic or alphabetic. On occasion, some systems use more than one of these at the same time. For example, the ancient Egyptians used all three systems simultaneously. In logographic writing systems, each symbol represents a word. In many of these systems, grammatical determiners are added to basic symbols these are special symbols indicating semantic or grammatical changes, such as compound or plural forms of words. The most obvious difficulty of this writing system is the enormous number of symbols needed to express every word. The Chinese writing system uses around 50,000 characters, although not all of them are commonly used. This explains why it’s not surprising that very few people could read and write in Imperial China. Even in modern times, it took several decades to create a Chinese language typewriter.

Syllabic Writing

Syllabic writing systems use symbols to represent syllables. Many early writing systems were syllabic: Assyrian and Babylonian cuneiform in the Near East, the two writing systems of pre-classical Greece, Japanese kana, and the ancient Mayan writing of Central America.

Babylonian cuneiform is a good example of how syllabic writing was used and developed. It first developed from Sumerian logographic writing, and both were written by imprinting wedge-shaped marks on wet clay tablets. They would put syllabic signs one after the other to form words.

Cuneiform syllabic writing was used for a long time in the ancient Near East, where it was in use between the years 3,100 and 100 BC. It was used to write other languages as well as Akkadian, such as Hittite and Elamite.

Babylonian cuneiform has around 600 symbols, although many of them are used for their different syllabic values.

Alphabetic Writing

Most modern languages use alphabetic writing systems where each symbol represents a basic sound. Spanish and most modern European languages are written with alphabets that come from the Latin alphabet. The great advantage of alphabetical systems is that far fewer symbols need to be learned than in logographic or syllabic systems, as most alphabets feature fewer than 30 characters.

It’s rather ironic, but it’s possible that the invention of the first alphabet was inspired by the ancient Egyptian script, one of the most complex writing systems ever invented. Egyptian hieroglyphs combined logographic, syllabic, and alphabetic symbols. In the middle of the second millennium BC, communities living in the Sinai Peninsula discovered that all of the sounds of their language could be expressed using a small number of alphabetic symbols.

It’s likely that the alphabetic systems descended from the original Sinai script were widely used throughout the Levant until 1150 BC. However, as this type of script was mostly written on perishable materials like parchment and papyrus, very few original materials remain. However, papyrus has been preserved in Egypt due to of the dryness of the desert and the absence of bacteria.

The earliest examples of alphabetic writing, which date from 1450 to 1150 BC, were found at the site of the ancient Canaanite city of Ugarit. A writing system consisting of 30 cuneiform symbols was invented to write in Ugaritic. Ugaritic written documents were engraved on clay tablets that are almost indestructible when baked. However, the few remaining documents suggest that the inhabitants of Ugarit were more accustomed to the usual Semitic alphabetic writing tradition of writing on perishable materials.

A very late, and particularly special, example of a surviving original Semitic parchment is the so-called Dead Sea Scrolls. Dating from about 100 BC to 68 AD, these mysterious religious texts written in Aramaic and Hebrew were found between 1947 and 1956 in clay pots in an Israeli desert cave. It’s easier to trace the evolution of the Levantine alphabets used in Semitic languages like Phoenician, Hebrew, and Aramaic after 1200 BC, as there are a few inscriptions carved in stone.

These alphabetic scripts differ from how modern European alphabetic writing is used in two important respects. Firstly, in Semitic writing texts are normally written right to left, instead of left to right. Secondly, vowel sounds and diphthongs in languages that use Semitic scripts (a, e, i, o, u, o, ai, oo, etc.) are not written, and only consonants are recorded (b, k, d, f, g, etc.).

It seems that the writing of vowel sounds occurred by accident, and it wasn’t some sort of brilliant invention. The Greeks were aware of the Levantine alphabets by having established regular contact with the Phoenicians and other peoples of the region between 950 and 850 BC, when they both, among others, established markets throughout the Mediterranean. Some letters that represent consonants in the Semitic sense sounded like vowels to the Greeks.

The Greeks also took their alphabet to Italy, where it was adapted for use in Etruscan, Latin, and other languages. The Roman Empire helped to spread their alphabet throughout much of Western Europe, although the Greek alphabet was still used in the Eastern Empire. By the time the Western Roman Empire fell in the 5th century, it was already a Christian empire. Writing (in Latin) had become essential in ecclesiastical administration. Both the Latin writing system and Christianity survived the empire that gave birth to them. During the early medieval period, the Latin alphabet was adapted to transcribe various languages, such as Gothic, Old Irish, French and Old English. Meanwhile, in the East, the Greek Orthodox Church expanded to the north, Russia and the Balkans, taking the Greek alphabet with them. It’s said that two Orthodox clerics, St. Cyril and St. Methodius, adapted the Greek alphabet to write Slavic languages. This is why the alphabet currently used in Russia, Bulgaria and other parts of Eastern Europe is called Cyrillic, in honor of St. Cyril. In this way, the Semitic, Greek, and Latin alphabets served as the basis of most of the alphabets currently used in modern Europe, the Middle East, and the Indian subcontinent.


The Incas

The Incas did not possess a written or recorded language as far as is known. Like the Aztecs, they also depended largely on oral transmission as a means of maintaining the preservation of their culture. Inca education was divided into two distinct categories: vocational education for common Incas and highly formalized training for the nobility. As the Inca empire was a theocratic, imperial government based upon agrarian collectivism, the rulers were concerned about the vocational training of men and women in collective agriculture. Personal freedom, life, and work were subservient to the community. At birth an individual’s place in the society was strictly ordained, and at five years of age every child was taken over by the government, and his socialization and vocational training were supervised by government surrogates.

Education for the nobility consisted of a four-year program that was clearly defined in terms of the curricula and rituals. In the first year the pupils learned Quechua, the language of the nobility. The second year was devoted to the study of religion and the third year to learning about the quipu (khipu), a complex system of knotted coloured strings or cords used largely for accounting purposes. In the fourth year major attention was given to the study of history, with additional instruction in sciences, geometry, geography, and astronomy. The instructors were highly respected encyclopaedic scholars known as amautas. After the completion of this education, the pupils were required to pass a series of rigorous examinations in order to attain full status in the life of the Inca nobility.


Names of Ancient Greek Astronomers

It is most certain that the names of Ancient Greek Astronomers are known worldwide, due to their contribution to Astronomy and mathematics.

The Hellenistic period marked advances in astronomy, mathematics and medicine. Hellinistic refers to the Greeks and others who lived after Alexander the Great’s conquests, during which there existed a mixture of civilizations.

The Greek astronomers were able to travel all over the known world and exchange opinions and theories.

The Greek contribution to astronomy was not so much in observation as it was in applying logical thinking and geometry to these observations. That is how Greek scientists figured out that the earth went around the sun, calculated the size of the earth, and understood that the moon went around the earth.

Some famous Greek astronomers fueron Anaxagoras, who figured out what caused eclipses, Aristarchus, who figured out that the earth went around the sun, and Thales, who figured out that the earth was round.

Here are the names and information about the most known Ancient Greek Astronomers:

Ancient Greek Astronomers

  • Aristarchus of Samos (310-230 B.C.) (Αρίσταρχος ο Σάμιος). Aristarchus suggested that the sun is at the center of the universe with Earth along with the other planets circulating around it. He estimated the distance of the sun from the Earth by observing the angle between the sun and the moon when it is exactly half full.

Greek astronomy is the astronomy of those who wrote in the Greek language in classical antiquity i.e. see Aristarchus of Samos – Greek astronomer/mathematician and his heliocentric model of the solar system.

Greek astronomy is understood to include the ancient Greek, Hellenistic, Greco-Roman, and Late Antiquity eras. It is not limited geographically to Greece or to ethnic Greeks, as the Greek language had become the language of scholarship throughout the Hellenistic world following the conquests of Alexander.

Greek astronomy is also known as Hellenistic astronomy, while the pre-Hellenistic phase is known as Classical Greek astronomy.

During the Hellenistic and Roman periods, much of the Greek and non-Greek astronomers working in the Greek tradition studied at the Museum and the Library of Alexandria in Ptolemaic Egypt.

The development of astronomy by the Greek and Hellenistic astronomers is considered by historians to be a major phase in the history of astronomy in Western culture. It was influenced by Babylonian astronomy in turn, it influenced Islamic, Indian, and Western European astronomy.


Ver el vídeo: La Historia de la Escritura. Videos Educativos para Niños